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Abstract—The lack of object-level annotations poses a signifi-
cant challenge for object detection in remote sensing images. To
address this issue, active learning and semi-supervised learning
techniques have been proposed to enhance the quality and
quantity of annotations. Active learning focuses on selecting the
most informative samples for annotation, while semi-supervised
learning leverages the knowledge from unlabeled samples. In this
paper, we propose a novel active learning method to boost semi-
supervised object detection for remote sensing images with a
teacher-student network, called SSOD-AT. The proposed method
incorporates a RoI Comparison module (RoICM) to generate
high-confidence pseudo-labels for Regions of Interest (RoIs).
Meanwhile, the RoICM is utilized to identify the top-K uncertain
images. To reduce redundancy in the top-K uncertain images
for human labeling, a diversity criterion is introduced based on
object-level prototypes of different categories using both labeled
and pseudo-labeled images. Extensive experiments on DOTA
and DIOR two popular datasets demonstrate that our proposed
method outperforms state-of-the-art methods for object detection
in remote sensing images.

Index Terms—Active learning(AL), semi-supervised object de-
tection(SSOD), teacher-student framework, remote sensing.

I. INTRODUCTION

OBJECT detection in remote sensing images is a crucial
task to identify the objects with their locations [1]. In re-

cent years, deep learning has shown promising results in object
detection for remote sensing images. However, the success of
deep learning approaches heavily relies on large-scale datasets
with accurately labeled data, which are typically annotated by
human experts. Unlike image classification, object detection
requires object-level labels that include both bounding box
coordinates and object categories. This annotation process
is more laborious and time-consuming. Additionally, remote
sensing images often contain objects with various orientations
and scales [2], [3], [4], [5], [6], which further complicates
the labeling process. Hence, although the collection of remote
sensing images are to be faster and easier with the advance-
ments of remote sensing technology, the availability of labeled
images for object detection is usually limited [7], [8], [9].

Semi-supervised learning (SSL) and active learning (AL)
are two promising techniques in machine learning to address
the problem with limited labeled images. SSL usually at-
tempts to exploit the unlabeled data with a limited amount
of labeled data by assuming the consistency between the
feature distribution of unlabeled data and labeled data. For
the semi-supervised object detection(SSOD) method, most of
them are developed based on a teacher-student network, which
introduces a secondary model (teacher) to guide the training of
the primary model (student). The teacher network uses weakly

augmented labeled data to generate high-quality pseudo-labels
for the student network [10]. The student network then is op-
timized by using the pseudo-labels as supervised information.

Different from SSL, AL generally focuses on the labeled
data, which are mainly collected by selecting the most infor-
mative samples from the unlabeled data for human experts
labeling [11]. The query criterion is the core technique in
AL methods, i.e. uncertainty and diversity [12], [13]. Yuan
et.al [14] proposes MI-AOD, an instance-level uncertainty-
based method which highlights the informative instances while
filtering out noisy ones to select the most informative images
for detector training. CALD [15] not only gauges individual
information for sample selection but also leverages mutual
information to alleviate unbalanced class distribution, thus
ensuring the diversity of selected samples.

Therefore, it is natural to consider combining AL and SSL
to enhance the performance of object detection when dealing
with limited labeled Remote Sensing Images (RSIs). In fact,
several methods have been developed for Semi-Supervised
Object Detection (SSOD) with AL in natural images. For
instance, Lv et al. proposed a novel semi-supervised active
salient object detection (SOD) method that utilized a salient
encoder-decoder with an adversarial discriminator to select the
most representative data. Mi et al. [16] introduced the concept
of ”Active Teacher,” which involves data initialization through
AL using a teacher-student-based SSOD approach. However,
these methods may not be directly applicable to remote sensing
images due to their higher resolution and the presence of more
complex objects.

We note that SSL usually relies on the labeled data to exploit
the unlabeled data for task learning, while AL aims to label
the most informative samples from the unlabeled data with
a query criterion. Therefore, it is a natural consideration to
combine AL and SSL together to improve the performance
of object detection with limited labeled RSIs. In fact, many
methods have been developed for SSOD with AL in natural
images. Lv et al. proposed a novel semi-supervised active
salient object detection (SOD) method that utilized a salient
encoder-decoder with an adversarial discriminator to select
the most representative data. Mi et al. [16] introduced the
method ”Active Teacher”, which involves data initialization
through AL using a teacher-student-based SSOD approach.
However, these methods usually ignore the redundancy in the
ROIs, resulting in that more images are selected to improve
the performance for SSOD.

In this paper, we propose a method Semi-Supervised Object
Detection with Active Teaching, termed as SSOD-AT, for
object detection in remote sensing images using a teacher-
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Fig. 1. Overview of SSOD-AT framework for three stages. Semi-Supervised Object Detection(SSOD): Using limited label set to initialize the parameters of
Teacher-Student framework. Active Learning(AL): Select the top-N valuable samples for labeling. Label set Augmentation(Oracle): Using the active selected
samples to augment the label set. Repeat the preceding procedures to train the Teacher-Student framework.

student network. Remote sensing images often contain objects
with large scale variations and high density, which is easy to
produce noisy ROIs. To mitigate the impact of these noisy
RoIs, we introduce a RoI Comparison Module (RoICM) that
compares the RoIs generated by the teacher network and the
student network. In our method, when the RoIs exhibit con-
sistent predictions between the teacher and student networks,
they are assigned pseudo-labels for semi-supervised training.
Conversely, for RoIs with divergent predictions, we utilize
them to calculate the uncertainty of the image based on the
teacher network’s predictions. To remove the redundancy from
the queried images, a diversity is designed by introducing a
global class prototype to ensure the diverse between the current
query image and selected images. Finally, we integrate the
uncertainty and diversity as the query score to select the most
valuable images for human labeling. The main contributions
of this article can be summarized as follows:

• A novel method to boost semi-supervised object detection
with active learning is proposed for remote sensing im-
ages based on the teacher-student network. The proposed
method can provide both confident pseudo-labels and
informative images.

• A RoI comparison module(RoICM) is introduced by
comparing the RoIs generated by teacher and student
network. It can effectively alleviate the influence of noisy
RoIs for semi-supervised learning and improve the ability
of active learning to evaluates the uncertainty of images.

• The proposed method further incorporates the global
class prototype for the diversity of selected images. The
combination of the two sampling strategies maximizes
the effectiveness of AL process.

II. METHODOLOGY

The proposed SSOD-AT method is shown in Fig.1. We
introduce an iterative strategy to train Teacher-Student network
with active learning for semi-supervised object detection.
In SSOD-At, a RoI Comparison Module is introduced by
producing confident pseudo-labels for the ROIs and providing
candidate ROIs for active learning to measure the uncertainty

of the images. Meanwhile, a diversity criterion is designed
based on the Global Class Prototype to remove the redundancy
with the queried images. In this section, we will introduce
the details of the RoI Comparison Module(RoICM) and the
diversity in detail.

A. RoI Comparison Module(RoICM) for Uncertainty selection

Given an unlabeled image xu
i , we first input it into both

the Teacher and Student networks to obtain their respective
predictions of RoIs. These RoIs are then fed into the RoICM
for comparison. RoICM employs a set of comparison rules
that ensure the highest degree of accuracy and precision in the
comparison process: If the RoIs predicted by both the Teacher
and Student networks have consistent classes, we add xu

i to
the set of images with consistent class predictions Iuconsis.
We deem the RoIs of xu

i ∈ Iuconsis predicted by the Teacher
network to be reliable and proceed to pseudo-label the image,
allowing to feed it into the Student network for the next stage
of training. If the RoIs predicted by both the Teacher and
Student networks have different classes, we add xu

i to the set
of images with different class predictions Iudiff . This decision
is predicated on the fact that xu

i ∈ Iudiff is considered to have
a higher level of uncertainty for the detection network, thereby
increasing its overall annotation value. Thus, they should be
included in the active learning selection sequence for human
labeling.

Assisted by RoICM, for xu
i ∈ Iuconsis, we calculate the KL

divergence based on the predicted class distributions by the
Teacher and Student networks:

Dkl =
1

ni
b

ni
b∑

j=1

Nc∑
k=1

pit (bj , ck)
log pit (bj , ck)

log pis (bj , ck)
(1)

where ni
b represents the number of proposal bounding boxes

generated by the Teacher network after NMS and confidence
threshold filtering, Nc is the number of instance categories and
pi (bj , ck) is the prediction probability of the k-th category by
the network. b

′

j and bj are the corresponding bounding boxes
predicted by student and teacher network respectively. A lower
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Dkl indicates more reliable pseudo-labels generated by the
teacher. Thus we assign a higher weight to those of images
when calculating the total loss as follows:

Lts
det (Dl,Du) = Lsup

det (Dl) + exp(−Dkl) · λu · Lunsup
det (Du)

(2)
Instead, for xu

i ∈ Iudiff that have a higher level of un-
certainty and annotation value, we measure the degree of
uncertainty based on the predicted category distribution of
the Teacher network for each instance of xu

i . The metric for
uncertainty is calculated as follows:

·Si
unc = − 1

ni
b

ni
b∑

j=1

Nc∑
k=1

pit (bj , ck) log p
i
t (bj , ck) (3)

B. Global Class Prototype for Diversity selection

We have established a global prototype for each class, which
serves as the basis for ensuring the diversity of the selected
image categories. Given a labeled image xl

i, we obtain a set
of RoI features Fgt

i from the ground-truth bounding boxes
generated by the RoI Head of the Student Detector in each
training stage:

Fgt
i =

{(
fgt
i,j , y

gt
i,j

)}
(4)

where fgt
i,j denotes the RoI feature of the j-th ground-truth

bounding box, ygti,j ∈ C is its class label while C is the set of
total instance categories. We obtain a local prototype for each
class by calculating the average of the RoI features by class:

vk =


∑

i,jf
gt
i,j1(y

gt
i,j=k)∑

i,j1(y
gt
i,j=k)

∑
i 1

(
ygti,j = k

)
> 0

0
∑

i 1
(
ygti,j = k

)
= 0

(5)

where vk is the local prototype of k-th class in C, 0 denotes
the zero vector and 1

(
ygti,j = k

)
is defined as follows:

1
(
ygti,j = k

)
=

{
1 if ygti,j = k

0 if ygti,j ̸= k
(6)

The global class prototype is updated using the EMA
algorithm [17], with the local class prototype serving as a
reference:

gk = αgk + (1− α)vk (7)

where gk is the global prototype of k-th class in C, α denotes
the hyper-parameter that is typically closed to 1. By applying
semi-supervised training on a small initial set of labeled
data, we are able to obtain the initial global class prototype,
which serves as a foundation for ensuring the diversity and
effectiveness of the subsequent active learning process.

For unlabeled images, we only adopt xu ∈ Iudiff to measure
their diversity and update the global class prototype, which
is due to the fact that this part of the images already has a
certain level of uncertainty and thus is more representative in
unlabeled set. First, to make the updating process of the global
class prototype smoother, we sort xu

i ∈ Iudiff from smallest
to largest uncertainty values. As described in Section 2.2.1,
the weak augmented unlabeled image Tw

(
xu
j

)
is first fed into

the Teacher network, which subsequently generates a set of
proposal bounding boxes bj . bj is then input into the RoI

head of the Student network to obtain its RoI feature fpgt
i,j . To

measure the similarity between fpgt
i,j and gk, we adopt cosine

similarity as a metric:

sim
(
fpgt
i,j , gk

)
=

fpgt
i,j (gk)

T

∥gk∥ ·
∥∥fpgt

i,j

∥∥ (8)

For each RoI feature fpgt
i,j , the class c in the global class

prototype with the highest similarity score can be identified,
denoted as maxk∈Nc

sim
(
fpgt
i,j , gk

)
. If the similarity score

falls below a certain threshold s, it suggests that the target
object might belong to a novel class that is not yet present
in the global class prototype. Consequently, the global class
prototype must be updated using equations (12) and (14).

To ensure the diversity of selected samples, we need to
suppress instances with high similarity to the global class
prototype. Therefore, we can calculate the diversity score Si

div

of the unlabeled image xu
i ∈ Iudiff :

Si
div = 1− 1

ni
b

ni
b∑

j=1

max
k∈Nc

sim
(
fpgt
i,j , gk

)
(9)

Higher Si
div means more dissimilar the image is to other

images, indicating that it may represent a novel class or a new
aspect of a known class. Finally, we use L-p normalization to
combine the two metrics as the final selection score of the
unlabeled image xu

i :

Si
sel =

p

√
(Si

unc)
p
+

(
Si
div

)p
(10)

III. EXPERIMENT AND ANALYSIS

A. Datasets
To extensively evaluate the proposed framework, two rep-

resentative and public datasets in remote-sensing images,
known as DOTA [18] and DIOR [19] were employed in
our experiments. DOTA [18] contains 2806 aerial images
from different sensors and platforms with crowd sourcing and
188,282 instances, covered by 15 common object categories.
DIOR [19] consists of 23,463 images and 192,472 instances
that are manually labeled with axis-aligned bounding boxes,
covering 20 object categories. In our experiments, we focus
on the task of detection with horizontal bounding boxes (HBB
for short). We divide both of the datasets into training set and
test set, with a ratio of 2:1.

B. Design of the Experiments
In the experiments, similar to the previous works for SSOD

[20], [16], the training set of datasets is randomly divided
into the labeled set and the unlabeled set. The labeled set is
initialized with 5% images from the training set of DOTA
and 2.5% of DIOR. For evaluation, we adopt mAP (50:95)
[21] as the basic comparison metric in our experiments. In the
SSOD-AT method, we adopt Faster-RCNN with ResNet-50 as
our basic detection network. The batch size for training is set
to 32, which consists 16 labeled and 16 unlabeled images via
random sampling. For the batch size h of active sampling, we
selected the 5% samples from the unlabeled data in DOTA
and the 2.5% samples in DIOR for human labeling in each
iteration.
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TABLE I
COMPARED WITH STATE-OF-THE-ART METHODS ON THE DOTA DATASET. THE METRIC IS MAP(50:95). “SUPERVISED” REFERS TO THE MODEL FED
BY LABELED DATA ONLY. * IS THE ORIGIN SSOD MODEL FED BY OUR ACTIVE SAMPLED DATA. ∆: AP GAIN TO THE SUPERVISED PERFORMANCE

Method DOTA
L+5% ∆ L+10% ∆ L+15% ∆ L+20% ∆ L+25% ∆ L+35% ∆ L+45% ∆

Supervised 26.62 +0.00 32.48 +0.00 36.71 +0.00 40.84 +0.00 43.83 +0.00 47.41 +0.00 52.16 +0.00
CALD 27.13 +0.51 35.46 +2.98 40.01 +3.30 43.09 +2.25 45.47 +1.64 50.83 +3.42 54.42 +2.26

Unbiased-Teacher 44.53 +17.91 47.36 +14.88 49.79 +13.08 52.49 +11.65 54.52 +10.69 57.22 +9.81 59.40 +7.24
ILNet 44.08 +17.46 46.81 +14.33 48.35 +11.64 51.12 +10.28 51.46 +7.63 54.77 +7.36 56.19 +4.03

Unbiased-Teacher* 44.31 +17.69 49.21 +16.73 52.19 +15.48 53.95 +13.11 55.55 +11.72 57.65 +10.24 59.88 +7.72
ILNet* 43.82 +17.20 46.97 +14.49 49.23 +12.52 50.64 +9.80 52.78 +8.95 54.61 +7.20 56.55 +4.39

Active-Teacher 44.27 +17.65 45.31 +12.83 46.84 +10.13 48.57 +7.73 51.27 +7.44 56.97 +9.56 60.46 +8.30
SSOD-AT(Random) 45.43 +18.81 48.75 +16.27 51.04 +14.33 53.37 +12.53 55.67 +11.84 58.34 +10.93 60.41 +8.25

SSOD-AT(Ours) 45.78 +19.16 49.86 +17.38 53.23 +16.52 55.02 +14.18 56.47 +12.64 59.02 +11.61 60.68 +8.35

TABLE II
COMPARED WITH STATE-OF-THE-ART METHODS ON THE DIOR DATASET. THE METRIC IS MAP(50:95). “SUPERVISED” REFERS TO THE MODEL FED
BY LABELED DATA ONLY. * IS THE ORIGIN SSOD MODEL FED BY OUR ACTIVE SAMPLED DATA. ∆: AP GAIN TO THE SUPERVISED PERFORMANCE

Method DIOR
L+5% ∆ L+10% ∆ L+15% ∆ L+20% ∆ L+25% ∆ L+35% ∆ L+45% ∆

Supervised 22.87 +0.00 25.28 +0.00 27.03 +0.00 29.34 +0.00 30.45 +0.00 32.49 +0.00 34.61 +0.00
CALD 24.10 +1.23 26.96 +1.68 28.85 +1.82 30.93 +1.59 32.21 +1.76 34.57 +2.08 36.45 +1.84

Unbiased-Teacher 43.25 +20.38 44.48 +19.20 45.65 +18.62 46.86 +17.52 47.20 +16.75 48.24 +15.75 49.03 +14.42
ILNet 43.91 +21.04 44.55 +19.27 45.69 +18.66 46.61 +17.27 47.20 +16.75 47.65 +15.16 48.63 +14.02

Unbiased-Teacher* 43.99 +21.12 45.22 +19.94 46.05 +19.02 47.07 +17.73 47.53 +17.08 48.36 +15.87 49.05 +14.44
ILNet* 43.77 +20.90 45.07 +19.79 46.06 +19.03 46.90 +17.56 47.38 +16.93 47.88 +15.39 48.61 +14.00

Active-Teacher 43.86 +20.99 44.92 +19.64 45.67 +18.64 46.64 +17.30 47.48 +17.00 48.23 +15.74 49.13 +14.52
SSOD-AT(Random) 44.10 +21.23 45.30 +20.02 46.31 +19.28 46.87 +17.53 47.56 +17.11 48.50 +16.01 49.71 +15.10

SSOD-AT(Ours) 44.20 +21.33 45.54 +20.26 46.75 +19.72 47.67 +18.33 48.14 +17.69 49.21 +16.72 49.90 +15.29

100% Supervised: 60.46
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Fig. 2. Detection results of the different algorithms on the two

remote-sensing datasets. (a) DOTA. (b) DIOR

C. Experimental Results and Analysis

1) Comparative Experiments With State-of-the-Art Meth-
ods: The proposed SSOD-AT is first evaluated on DOTA in
Table I. Compared with the results of SSOD-AT(Random),
our method consistently outperforms the comparison methods
at each labeling ratio, which indicates RoICM is capable for
detecting noisy RoIs in remote sensing images. Meanwhile,
with the increasing of labeled images by active learning,
the performance of our proposed method almost outperforms
the SOTA methods in the whole active learning loops. From
the results, we can observe that when Unbiased-Teacher and
ILNet are adopted with the proposed active learning strategy,
e.g. Unbiased-Teacher* and ILNet*, the performance in the
active learning loops alway can achieve better performance,
this further demonstrates the efficiency of our active learning
strategy. The results are similar when we evaluate SSOD-AT
on DIOR, as shown in Table II. In Fig. 2(a) and Fig. 2(b),
our method achieves comparable detection capability to the

TABLE III
ABLATION STUDY OF PROPOSED SSOD-AT ON DOTA DATASET

Method RoICM Sampling Strategy DOTA

Uncertainty Diversity 10.0% 15.0% 20.0%

Baseline × × × 44.53 47.36 49.79

SSOD-AT
✓ × × 45.43 48.75 51.04
✓ ✓ × 45.34 49.17 51.87
✓ ✓ ✓ 45.87 49.43 52.57

TABLE IV
ABLATION STUDY OF PROPOSED SSOD-AT ON DIOR DATASET

Method RoICM Sampling Strategy DIOR

Uncertainty Diversity 10.0% 15.0% 20.0%

Baseline × × × 43.25 45.65 47.20

SSOD-AT
✓ × × 44.10 46.31 47.56
✓ ✓ × 44.15 46.60 47.88
✓ ✓ ✓ 44.20 46.75 48.14

fully supervised model with the label proportion of 50.0% on
DOTA and 30% on DIOR, thereby substantially reducing the
number of labeled samples for training.

2) Ablation Study: We ablate the two main parts of SSOD-
AT, RoICM and Sampling Strategy, on DOTA and DIOR
datasets in Table III and IV. In both tables, the first row
represents a baseline teacher-student SSOD method(Unbiased-
Teacher). The second row adds our novel RoICM module into
the baseline with training samples randomly selected from
datasets. The third and forth rows ablate the uncertainty and
diversity modules in our sample strategy, respectively. It can
be seen that the accuracy of SSOD-AT is gradually improved
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Fig. 3. Visualization of the images with top rank selection priority with dif-
ferent active sampling strategies. The Prediction columns denotes the pseudo-
labels predicted by teacher network with 30%(DOTA) and 20%(DIOR) labeled
proportions, while the GT columns refers to the corresponding ground-truths.

from adding RoICM to reject the noisy RoI to applying our
sampling strategy to augment training samples.

3) Visualization Analysis: In Fig. 3, we visualize the exam-
ples selected by active sampling strategies when 30% images
are labeled in DOTA and 20% images are labeled in DIOR.
It is observable that the uncertainty selection usually selects
images with objects that are difficult to detect(e.g., small
and occluded objects). Comparing Prediction and GT, we can
deserve that a large number of objects are missing since the
detector is highly uncertain about these images. However,
the samples selected by uncertainty are greatly susceptible
to be category imbalanced (e.g., a significant fraction of
images containing vehicles), while the addition of the diversity
selection allows images containing more categories.

IV. CONCLUSION

We propose a novel method for semi-supervised object
detection with active learning for remote sensing images.
The proposed method integrates the RoI Comparison Mod-
ule(RoICM) and Category Prototype to ensure the reliability
of pseudo-labels generated by the Teacher Detector and to
effectively select the most informative images from a vast
pool of remote sensing images for expert labeling. Our pro-
posed method is extensively evaluated on two remote sensing
datasets, and it consistently outperforms state-of-the-art meth-
ods.
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